Indian Journal of Chemistry

Sect. B: Organic Chemistry including Medicinal Chemistry

VOL. 53B NUMBER 6 June 2014

CONTENTS

Papers

717 Asymmetric synthesis of C11-C23 fragment of Pladienolide B

A gram-scale synthesis of C11-C23 fragment of antitumor natural product Pladienolide B has been carried out.

Sanjida Khatun, Prathama Satyendra Mainkar & Srivari Chandrasekhar*

Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

723 Diheteroaromatic dianionic oxy-Cope rearrangement route to the synthesis of novel heterocyclic compounds

This new reaction termed as diheteroaromatic dianionic oxy-Cope rearrangement is used for the synthesis of novel heterocyclic compounds 4,5-Diphenyl-3,6-dithia-4,5-dihydro-indacene-4,5-diol (2), 25, 26-Dioxo-12, 23-dithiaheptacyclo[12.10.2.03,7.08,12.018,22]docosa-1(21), 3(7), 5, 8(12), 9, 11, 15(19), 17, 20(24), 21 decacene (4) and 4,11- Dithiapentacyclo[12.7.1.03,7.08,12.018,22]docosa -1(21), 3(7), 5, 8(12), 9, 14(22), 15, 17, 19-nonaene-2,13-dione (6).

C A M A Huq* & S Sivakumar

Post Graduate and Research Department of Chemistry, The New College, Chennai 600 014, India
Pyrido[2,3-\textit{d}]pyrimidines: A novel tandem Michael cyclization of 6-aminouracils with arylidenecyanoacetate using \textit{BiCl}_3

1,3-Dimethyl-2,4,7-trioxo-5-aryl-1,2,3,4,7,8-hexahydropyrido[2,3-\textit{d}]pyrimidine-6-carbonitriles have been synthesized via tandem Michael cyclization of 6-aminouracils with arylidene ethylenecyanoacetates employing catalytic amount of \textit{BiCl}_3. Under mild reaction conditions, pyrido[2,3-\textit{d}]pyrimidines are obtained in very good yields in one pot.

Subhash Chand, Suresh & Jagir S Sandhu*
Department of Chemistry, Punjabi University, Patiala 147 002, India

Synthesis and biological screening of some novel 2-(1H-pyrazol-1-yl)-acetamides as lidocaine analogue

2-(1H-Pyrazol-1-yl)-acetamides have been synthesized by N-alkylation of pyrazoles with 2-idoacetanilides. The new compounds have been characterized by elemental analysis, \textit{1H NMR}, \textit{13C NMR}, IR, UV-Vis and MS spectra. Acute toxicity, local anesthetic and anti-arrhythmic activities have been assessed for compounds using the established protocols.

Christina Zalaru*, Florea Dumitrascu, Constantin Draghi,
Mircea Iovu, Maria Marinescu, Isabela Tarcomnicu & George Mihai Nitulescu
University of Bucharest, Faculty of Chemistry, Bucharest, 90-92 Road Pandurii, Romania
Copper chloride-catalyzed efficient three-component one-pot synthesis of carbamatoalkyl naphthols under solvent-free conditions

A highly efficient synthesis of carbamatoalkyl naphthols by a one-pot three-component condensation of 2-naphthol, aldehydes, and methyl/ethyl/benzyl carbamates in the presence of copper chloride under thermal solvent-free conditions has been performed.

\[
\text{2-naphthol} + R_1\text{CHO} + \text{NH}_2\text{CO}_2\text{R}_2 \xrightarrow{\text{CuCl}_2\cdot\text{H}_2\text{O} \ (1 \text{ mol\%}) \ 70^\circ\text{C}, \text{ solvent-free}} \rightarrow \text{R}_1\text{NHCO}_2\text{R}_2
\]

Zhiguo Song*, Lianli Liu, Xiaohu Sun & Yan Cui
Management Center for Experiments, Bohai University, Jinzhou 121013, P. R. China

Antioxidant flavone glycosides and other constituents from Premna latifolia leaves

Three chemicals have been isolated from Premna latifolia Roxb. (Verbenaceae) leaves namely apigenin 7-\(\beta\)-d-apiofuranosyl (1\(\rightarrow\)2)-\(\alpha\)-l-rhamnopyranoside 1, apigenin 7-\(\beta\)-d-glucopyranoside-4'-acetate 2 and \(\beta\)-sitosterol-3-\(\beta\)-d-glucoside 3. Compound 1 is new and 2 is being reported for the first time from a higher plant. Both 1 and 2 show significant antioxidant activity against DPPH. Structures of these compounds have been elucidated on the basis of detailed spectral (including 2D-NMR) and chemical studies.

Partha Sarathi Ghosh, Niranjan Das & Biswanath Dinda*
Department of Chemistry, Tripura University, Suryamaninagar 799 022, India
Aziridination of olefins with bromamine-T in presence of iodine as catalyst

A strategy for achieving synthesis of aziridine employing iodine catalysed aziridination of alkenes with bromamine-T as nitrene source has been described. Ethyl acetate has been found to be the most suitable solvent and the strategy has been extended to various kinds of olefins to produce the corresponding aziridines in high yield.

\[R = \text{alkene}, \quad R' = \text{alkyl} \]

\[\text{TsNBrNa} \quad \text{Iodine (0.1 equiv)} \quad \text{EtOAc, RT, 1h} \]

Chinta Mani Sharma, Bishwapran Kashyap & Prodeep Phukan*
Department of Chemistry, Gauhati University, Guwahati 781 014, India

Evaluation of insecticidal activity of some benzofused heterocycles against different insect pests

Mayur M Aitawade, Prakash P Sambavekar, Pandurang B Mohite, Govind B Kolekar, Madhukar B Deshmukh & Prashant V Anbhule*
Department of Chemistry, Shivaji University, Kolhapur 416 004, India
Tamarind fruit juice as a natural catalyst: An excellent catalyst for efficient and green synthesis of bis-, tris-, and tetraindolyl compounds in water

An efficient and greener synthesis of bis-, and tris(indolyl)methanes and synthesis of di-bis(indolyl)methanes have been accomplished via two-component one pot condensation between substituted aldehydes and indoles using aqueous tamarind fruit juice as a natural catalysts. The use of water as reaction medium makes this process totally nonpolluting having several advantages such as mild reaction conditions, simple work-up procedures and reduces environmental impact.

\[
\text{Rammohan Pal}
\]
Department of Chemistry, Acharya Jagadish Chandra Bose College, 1/1B, A. J. C. Bose Road, Kolkata 700 020, India

Synthesis, characterization, cytotoxicity and antimycobacterial screening of some \(p \)-substituted benzyl thiosemicarbazones

In vitro cytotoxic activity against leukemia K562 cell line by MTT assay has been carried out. Significant dose-dependent cytotoxicity in the range (IC\(_{50}\) 3.01-5.67 \(\mu \)M) has been found. Antimycobacterial drug susceptibility testing against \(M. \) smegmatis by REMA assay has been studied.

\[
\text{Ashok K Singh*}, \text{ Ravindra K Singh, M Arshad, Sahabjada, Sudheer K Singh & Ragini Sinha}
\]
Department of Chemistry, University of Lucknow, Lucknow 226 007, India

Authors for correspondence are indicated by (*)