Catalytic performance of acidic ionic liquid in esterification of benzyl alcohol with butyric acid

Xiaodan Wu, Xiaoxiang Han, Lingxiao Zhou & Ang Li*

Synthesis of benzyl butyrate is optimized by response surface methodology using SO$_3$H-functionalized Brønsted acidic ionic liquids as catalysts. A Box-Behnken model has been applied to obtain the optimal conditions ($R^2 = 0.9907$). Under the optimized conditions, the yield of benzyl butyrate reaches 99.4%. [HSO$_3$-pmm][HSO$_4$] shows high stability and catalytic activity for the esterification.

Novel Fe encapsulated montmorillonite K10 clay for photo-Fenton mineralization of Acid Yellow 17

Muthuvel, B Krishnakumar & M Swaminathan*

Solid hetero-Fenton catalyst with 26 % ferric nitrate loading is found to be most efficient in the degradation of Acid Yellow 17. While its activity is significant up to pH 7, the catalyst exhibits the best photocatalytic activity at pH 3.
807 CdO and CdS nanoparticles from pyrolytic method: Preparation, characterization and photocatalytic activity

Sandip Mondal, Tanmay Chattopadhyay*, Sudhanshu Das, Sankar Roy Maulik, Swarup Neogi & Debasis Das

812 Intercalation of biologically important iminodiacetato-chromium(III) ion in the interlayer of ZnAl-layered double hydroxide

Intercalation of the biologically important bis-iminodiacetato-chromium(III) ion, [Cr(ida)₂]⁺, in the interlayer of ZnAl-layered double hydroxide through rehydration of ZnAl(O) mixed oxide, and, its characterization by XRD, TG-DTA, FT-IR and UV-vis-DRS is described.

R Sahu, B S Mohanta & N N Das*
2,7-Diferrocenyl-3,6-diazaocta-2,6-diene: A highly selective dual fluorescent sensor for Zn$^{2+}$ and Ag$^+$ and electrochemical sensor for Zn$^{2+}$

Kaku Dutta & Diganta Kumar Das*

Microwave synthesis of polymer coated silver nanoparticles by glucose as reducing agent

Silver nanoparticles (~ 11 nm) are prepared by a simple method employing silver nitrate as precursor, glucose as reducing agent and PVP as stabilizing agent.

Jolly Pal & Manas Kanti Deb*
Cold induced aggregation microextraction with an ionic liquid, [C₆MIM][PF₆], is used as a rapid and simple method for determination of trace amounts of cadmium and lead by sequential analysis with flame atomic absorption spectroscopy.

Authors for correspondence are indicated by (*)