Indian Journal of Chemistry
Sect. B: Organic Chemistry including Medicinal Chemistry

VOL. 58B
NUMBER 02
February 2019

CONTENTS

Perspective

137 AIEgens: Rockstars at the age of Adolescence

Fluorogens due to Aggregation Caused Quenching (ACQ)

Atul Goel* & Ajay K Jha

CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India

Papers

140 Visible light-mediated amidation of aryl diazonium salts with nitriles – A novel photo-Ritter type reaction

Anil K Singh*, Vinod K Yadav & L D S Yadav

Formerly Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
147 Delivery of a bioactive photosensitizer to natural DNA using γ-cyclodextrin as carrier

Multispectroscopic studies unequivocally ascertain that addition of DNA to the γ-cyclodextrin-bound PSF leads to the transfer of the probe from the CD nanocavity to the DNA.

Pronab Kundu, Tirtha Mondal, Sinjan Das & Nitin Chattopadhyay*
Department of Chemistry, Jadavpur University, Kolkata 700 032, India

157 Visible light driven photocatalytic degradation of brilliant green dye using graphene oxide/copper oxide binary composite

Preparation of graphene oxide/copper oxide binary composite and its use in photocatalytic degradation of brilliant green dye under visible light is described.

Rukhsar Banu, Nutan Salvi, Chetna Ameta, Rakshit Ameta & Pinki B Punjabi*
Photochemistry Laboratory, Department of Chemistry, University College of Science, M. L. Sukhadia University, Udaipur 313 002, India

167 Solvent modulated optical tuning for discrimination of Hg²⁺, Zn²⁺ and Cu²⁺ ions by a coumarin-functionalized azine receptor

Subrata Kumar Padhan, Punam Rana, Narayan Murmu, Biswa Ranjan Swain & Satya Narayan Sahu*
School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, India
Visible light photoredox catalyzed one pot Stadler–Ziegler reaction of heteroaryl amines with heteroaryl thiols at room temperature: An efficient synthesis of diheteroaryl sulphides

An efficient synthesis of diheteroaryl sulphides has been achieved by visible light photo catalyzed reaction of heteroaryl thiols and heteroaryl amines via in situ diazotization of heteroaryl amines with t-BuONO under LED light irradiation at room temperature. A library of functionalized diheteroaryl sulphides are obtained by using this protocol.

Subir Panja, Puneshwar Sahu & Brindaban C Ranu*

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India

A new pyrrolyl-pyranone based AIEgen with solution solid dual emissive property

Ajay Kumar Jha, Deepak Purohit, Chandra Prakash Sharma, Neeraj Mohan Gupta, Kundan Singh Rawat & Atul Goel*

Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road, Lucknow 226 031, India
200 Solvent directed self-assembly of naphthalenediimide-tryptophan-glutamate conjugates Various supramolecular nanostructures of naphthalene-diimide bearing Trp-GLU dipeptide in THF:MCH have been reported, which yield microsheet and microfiber, respectively.

Santosh P Goskulwad, Duong Duc La, Rajesh S Bhosale, Avinash L Puyad, Sidhanath V Bhosale & Sheshanath V Bhosale*

Polymers and Functional Materials Division and Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

209 Experimental and theoretical investigations on the photo-oxidation reaction of OH radicals with 2,3-dimethyl-1,3-butadiene in gas phase Temperature dependent rate coefficients have been measured for the reaction of OH radicals with 2,3-dimethyl-1,3-butadiene over the temperature range of 269–359K using relative rate experimental technique. To complement the experimental measurements, theoretical calculations have been performed for the title reaction using CVT/SCT in combination with CCSD(T)/aug-cc-pvdz//M062X/6-311+G(d,p) level of theory.

S Vijayakumar & B Rajakumar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
An overview on biomolecular caging and photocleavable molecules

Biomolecular caging is a powerful photochemical technique for achieving spatially and temporally controlled release of bioactive compounds with wide range of applications in biology, chemistry, medicine, materials and physiology; In this technique, a bioactive molecule is rendered inactive by covalently linking it to a light-sensitive group and when required, the caged molecule can be liberated in its active form by irradiation of the cage.

Prasanta Kumar Hota
Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246 176, India

Exploring flavonoid-DNA interactions via photoinduced proton transfer and two color fluorescence studies: Perspectives and emerging frontiers

Pradeep K Sengupta
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, India
238 Synthesis and studies of phenothiazine based AIE fluorogens

Neha Manav, Vani Verma, Vijayalakshmi Pandey, Hilal Rather, Rajesh Vasita & Iti Gupta*
Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar 382 355, India

247 Stilbene stilbene shining bright: α-Cyanostilbenes as functional organic materials

Beena Kumari & Sriram Kanvah*
Department of Chemistry, IIT Gandhinagar, Palaj Campus, Gandhinagar 382 355, India

Authors for correspondence are indicated by (*)