ANNUAL INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>346</td>
<td>Effect of process variables on the properties of air-jet textured yarns using response surface design</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Evaluation of physical bulk of air-jet textured yarns</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Air-jet texturizing</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Effect of process variables on the properties of air-jet textured yarns using response surface design</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Properties of polyester/wool parent and air-jet textured yarns and their fabrics</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part III—A study of attrition during weaving for air-jet, ring and rotor yarns on a modern high speed weaving machine</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Kinetics of dyeing acrylic acid-grafted cotton fabric with basic dyes</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Influence of some test parameters on friction in acrylic fibres</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Use of polysaccharide fibres for modern wound dressings</td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>Digital control of ambient relative humidity for measurement of electrical resistance of cashmere fibre</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>Alginate</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>Use of polysaccharide fibres for modern wound dressings</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>Mechanical properties of combed yarn composites</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>Air-jet spinning</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Elastic recovery properties of polyester jet-spin yarns</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Prediction of fibre quality from anatomical studies of jute stem: Part II—Prediction of strength</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Prediction of fibre quality from anatomical studies of jute stem: Part I—Prediction of fineness</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Thermal conductivity of unidirectional fibre composites made from yarns and computation of thermal conductivity of yarns</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Property modification of Antheraea assana silk fibre through graft copolymerization</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Antheraea assana</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Property modification of Antheraea assana silk fibre through graft copolymerization</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Antheraea flavipes Le Conte</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Synthesis of substituted benzyl ethers and their moth proofing activity against wool pest Antheraea flavipes Le Conte</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Apron slippage in ring frame: Part II—Factors affecting apron slippage and their effect on yarn quality</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality</td>
<td></td>
</tr>
<tr>
<td>Page 290</td>
<td>Effect of hydrogen peroxide bleaching on sulphonated jute-cotton blended fabric</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Page 290</td>
<td>Blended yarn</td>
<td></td>
</tr>
<tr>
<td>Page 307</td>
<td>Properties of polyester/wool parent and air-jet textured yarns and their fabrics</td>
<td></td>
</tr>
<tr>
<td>Page 48</td>
<td>Tensile properties of polyester/cotton blended yarns</td>
<td></td>
</tr>
<tr>
<td>Page 315</td>
<td>Bottom apron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality</td>
<td></td>
</tr>
<tr>
<td>Page 166</td>
<td>Box-Bechhken design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of process variables on the properties of air-jet textured yarns using response surface design</td>
<td></td>
</tr>
<tr>
<td>Page 65</td>
<td>Break draft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apron slippage in ring frame: Part II—Factors affecting apron slippage and their effect on yarn quality</td>
<td></td>
</tr>
<tr>
<td>Page 111</td>
<td>Breaking load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weighting of silk by graft copolymerization technique</td>
<td></td>
</tr>
<tr>
<td>Page 422</td>
<td>Breaking strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of hydrogen peroxide bleaching on sulphonated jute-cotton blended fabric</td>
<td></td>
</tr>
<tr>
<td>Page 369</td>
<td>Brightness index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute</td>
<td></td>
</tr>
<tr>
<td>Page 315</td>
<td>Crease-resistant finishing of jute fabric using polycarboxylic acids</td>
<td></td>
</tr>
<tr>
<td>Page 184</td>
<td>Carbopol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preparation and characterization of guaran carboxylate as a thickener in disperse dye printing pastes</td>
<td></td>
</tr>
<tr>
<td>Page 65</td>
<td>Cashmere fibre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital control of ambient relative humidity for measurement of electrical resistance of cashmere fibre</td>
<td></td>
</tr>
<tr>
<td>Page 91</td>
<td>Cellular automation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generating textile designs using cellular automata</td>
<td></td>
</tr>
<tr>
<td>Page 429</td>
<td>Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal studies on cellulose cyclohexene phosphonate in air</td>
<td></td>
</tr>
<tr>
<td>Page 307</td>
<td>Cellulose cyclohexene phosphonate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal studies on cellulose cyclohexene phosphonate in air</td>
<td></td>
</tr>
<tr>
<td>Page 65</td>
<td>Cellulosic fibre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural quality assessment of different cellulose jute fibres by X-ray diffraction</td>
<td></td>
</tr>
<tr>
<td>Page 280</td>
<td>Structural quality assessment of different cellulose jute fibres by X-ray diffraction</td>
<td></td>
</tr>
<tr>
<td>Page 85, 259</td>
<td>Chakraborty M. See Suri Mona</td>
<td></td>
</tr>
<tr>
<td>Page 111</td>
<td>Chattopadhayya R. See Banerjee P K</td>
<td></td>
</tr>
</tbody>
</table>
Kinetics of dyeing acrylic acid-grafted cotton fabric with basic dyes
Modification of cotton fabrics via radiation graft copolymerization with acrylic acid, acrylonitrile and their mixtures

Cotton-yarn
Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality
Study on rotor deposition: Part I—Influence on quality and running performance of grey cotton yarn
Study on rotor deposition: Part II—Influence on quality and running performance of fibre-dyed cotton yarn

Cotton-jute fabric
Effect of hydrogen peroxide bleaching on sulphonated jute-cotton blended fabric

Cotton-polyester fabric
Development of protective clothing for pesticide industry: Part I—Assessment of various finishes
Development of protective clothing for pesticide industry: Part II—An eco-friendly approach in selection of resins
Improvement in surface-related properties of poly(ethylene terephthalate)/cotton fabrics by glow-discharge treatment

Cotton-polyester yarn
Structure of air-jet spun yarns produced with various twisting nozzles on PLYfile 1000 system
Tensile properties of polyester/cotton blended yarns
Crease recovery
Crease recovery of fabrics with air-jet textured weft yarns
Crease recovery angle
Crease-resistant finishing of jute fabric using polycarboxylic acids

Crock fastness
Study on rotor deposition: Part II—Influence on quality and running performance of fibre-dyed cotton yarn

Dahiya J B
Thermal studies on cellulose cyclohexenephosphonate in air

Das A
Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality
Apron slippage in ring frame: Part II—Factors affecting apron slippage and their effect on yarn quality

Das A M
Property modification of Antheraea assama silk fibre through graft copolymerization

Das K See
Karmakar S R
Properties and processability of compact yarns

Dash Jyoti Ranjan
Degumming
Weighting of silk by graft copolymerization technique

Day A See
Chatopadhyay S N

Devi A Shanada
Kalyani K Lakshmi

Devarajan
Use of polysaccharide fibres for modern wound dressings

Dhamija S

Effect of friction drum speed and yarn delivery rate combination for a constant friction ratio on quality of friction-spun yarns
See Salhotra K R

Dibenzyld ether
Synthesis of substituted benzyl ethers and their moth proofing activity against wool pest Antimesotis flavipes Le Conte

Disperse dye
Preparation and characterization of guaran carbamate as a thickener in disperse dye printing pastes

Drape coefficient
Weighting of silk by graft copolymerization technique

Draped pleat design
Predicting the draped pleat graceful appearance through fabric mechanical properties

DREF-3 yarn
Effect of friction drum speed and yarn delivery rate combination for a constant friction ratio on quality of friction-spun yarns
Influence of filament core surface structure on tensile properties of DREF-3 yarns
Influence of frictional characteristics of core and sheath in relation with core-sheath ratio and spinning drums' speed on tensile characteristics of DREF-3 friction-spun yarns

DREF-II yarn
Effect of friction drum speed and yarn delivery rate combination for a constant friction ratio on quality of friction-spun yarns
Twist structure of friction-spun yarns: Part I—Open-end DREF-arms

Drum driven winder
Evaluation of physical bulk of air-jet textured yarns
Preparation and characterization of guaran carbamate as a thickener in disperse dye printing pastes

Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute

Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE rotor-spun yarns

Improvement in surface-related properties of poly(ethylene terephthalate)/cotton fabrics by glow-discharge treatment

Solvent-induced modifications in poly (ethylene terephthalate) structure, properties and dyeability

Alternative reducing system for dyeing of cotton with sulphur dyes

Dyeing of Indian wool with reactive dyes

Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute

Isolation of colour component from the roots of *Morinda angustifolia* Roxb. and evaluation of its dyeing characteristics

Kinetics of dyeing acrylic acid-grafted cotton fabric with basic dyes

Modification of cotton fabrics via radiation graft copolymerization with acrylic acid, acrylonitrile and their mixtures

Weighting of silk by graft copolymerization technique

Dynamic tensile test

Tensile properties of polyester/cotton blended yarns

Digital control of ambient relative humidity for measurement of electrical resistance of cashmere fibre

Kinetics of dyeing acrylic acid-grafted cotton fabric with basic dyes

Modification of cotton fabrics via radiation graft copolymerization with acrylic acid, acrylonitrile and their mixtures

Elastic recovery

Elastic recovery properties of polyester jet-spun yarns

Influence of process parameters on flexural rigidity and elastic recovery of polyester OE rotor-spun yarns

Digital control of ambient relative humidity for measurement of electrical resistance of cashmere fibre

End breakage rate

Study on rotor deposition: Part II — Influence on quality and running performance of fibre-dyed cotton yarn

Enzyme treatment

A comparative study of two wool enzyme treatments

A geometric model of woven geotextile fabric to predict tensile property

Crease recovery of fabrics with air-jet textured weft yarns

Crease-resistant finishing of jute fabric using polyenoxyllic acids

Development of protective clothing for pesticide industry: Part I — Assessment of various finishes

Development of protective clothing for pesticide industry: Part II — An ecofriendly approach in selection of resin

Development of various colours and shades in naturally coloured cotton fabrics

Effect of hydrogen peroxide bleaching on sulphonated jute-cotton blended fabric

Engineering design of woven fabrics — A recent approach

Evaluation of comfort properties of polyester-viscose suiting fabrics

Improvement in surface-related properties of poly(ethylene terephthalate)/cotton fabrics by glow-discharge treatment

Isolation of colour component from the roots of *Morinda angustifolia* Roxb. and evaluation of its dyeing characteristics

Kinetics of dyeing acrylic acid-grafted cotton fabric with basic dyes

Modification of cotton fabrics via radiation graft copolymerization with acrylic acid, acrylonitrile and their mixtures

Predicting the draped pleat graceful appearance through fabric mechanical properties

Preparation and characterization of guaran carbamate as a thickener in disperse dye printing pastes

Properties of polyester/wool parent and air-jet textured yarns and their fabrics

Weighting of silk by graft copolymerization technique
Influence of frictional characteristics of core and sheath in relation with core/sheath ratio and spinning drums' speed on tensile characteristics of DREF-3 friction-span yarns

Twist structure of friction-span yarns: Part I—Open-end DREF-II yarns

Frictional characteristics

Influence of frictional characteristics of core and sheath in relation with core/sheath ratio and spinning drums' speed on tensile characteristics of DREF-3 friction-span yarns

Frictional force

Influence of some test parameters on friction in acrylic fibres

FTIR-ATR study

A comparative study of two wool enzyme treatments

Fukurami

Evaluation of comfort properties of polyester-viscose suiting fabrics

G hirsatul I.

Development of various colours and shades in naturally coloured cotton fabrics

Gauge length

Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution

Geometric parameters

A geometric model of woven geotextile tape fabric to predict tensile property

Geotextile

A geometric model of woven geotextile tape fabric to predict tensile property

Investigations into homogeneity of coir fibres

Ghosh S.

Use of polysaccharide fibres for modern wound dressings

See Bera Asim K
See Jassal M
See Karmakar S R

Ghosh Subhas

A geometric model of woven geotextile tape fabric to predict tensile property

Glass fibre

Mechanical properties of commingled yarn composites

Glow-discharge treatment

Improvement in surface-related properties of poly(ethylene terephthalate)/cotton fabrics by glow-discharge treatment

Gowda R V M See Ishitaque S M
See Salhotra K R
Jassal M
Aramid fibres—An overview
See Ghosh S

Jiaoyong Yu See Long Li

Jocie D See Jovanec P

Johari M See Ekhtiyari E

Joshi Vidya See Acharya Chandrashekar Waman

Jovanec P
A comparative study of two wool enzyme treatments

Julia M R See Jovanec P

Jute
Crease-resistant finishing of jute fabric using polycarboxylic acids

Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute

Effect of thermal treatment on wrap-spin jute yarns

Jute fibre
Prediction of fibre quality from anatomical studies of jute stem: Part II—Prediction of strength

Prediction of fibre quality from anatomical studies of jute stem: Part I—Prediction of fineness

Structural quality assessment of different cellulose jute fibres by X-ray diffraction

Jute-cotton fabric
Effect of hydrogen peroxide bleaching on sulphonated jute-cotton blended fabric

Kashik R C D See Kothari V K
See Dhamija S
See Salhotra K R

Kalyani K Lakshmi
Physical properties of oil-palm leaf fibre

Karmakar S R
Weighting of silk by graft copolymerization technique

Kawahata S
Thermal conductivity of unidirectional fibre composites made from yarns and computation of thermal conductivity of yarns

See Rengasamy R S

Kevlar
Aramid fibres—An overview

Kevlar fibre
Computation of thermal conductivity of fibre from thermal conductivity of twisted yarn

Khandelwal M See Tyagi G K

Khanna K See Suri Mona

Kimothi P D See Sengupta A K

Kothari V K
Evaluation of physical bulk of air-jet textured yarns

Properties of polyester/wool parent and air-jet textured yarns and their fabrics

Tensile properties of polyester/cotton blended yarns

See Mukhopadhyay A
See Palta Deepali

Krishna Iyer K R See Hussain G F S

Kulkarni V G
Dyeing of Indian wool with reactive dyes

Lignocellulose
Physical properties of oil-palm leaf fibre

Liquid crystalline spinning
Aramid fibres—An overview

Long Li
Mechanical properties of commingled yarn composites

Longitudinal conductivity
Thermal conductivity of unidirectional fibre composites made from yarns and computation of thermal conductivity of yarns

Lyocell
Structure of air-jet spun yarns produced with various twisting nozzles on PLYflL 1000 system

Main draft
Influence of process parameters on hairiness of polyester MJS yarns

Majumdar S
Prediction of fibre quality from anatomical studies of jute stem: Part II—Prediction of strength

Prediction of fibre quality from anatomical studies of jute stem: Part I—Prediction of fineness

Mandal S See Karmakar S R

Mandai S
See Kothari V K

Lyoeell
Cotton fabric

L.. physical properties of cotton fibres

Mec... mechanical properties of cotton fabrics

Mechanical properties of cotton fabrics

Mechanical properties of cotton fabrics

Mechanical properties of cotton fabrics
Mechanical properties
Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE rotor-spun yarns
Solvent-induced modifications in poly(ethylene terephthalate) structure, properties and dye-ability

Methylmethacrylate
Property modification of Antheraea assama silk fibre through graft copolymerization

Microfibres
Microfibres—An overview

MJS yarn
Elastic recovery properties of polyester jet-spun yarns
Influence of process parameters on hairiness of polyester MJS yarns
Structure and properties of polyester MJS plied yarns

Molasses
Alternative reducing system for dyeing of cotton with sulphur dyes

Molina R See Jovancic P

Mondal Md. Ibrahim H
Effect of hydrogen peroxide bleaching on sulphated jute-cotton blended fabric

Mordants
Isolation of colour component from the roots of Morinda angustifolia Roxb. and evaluation of its dyeing characteristics

Morinda angustifolia
Isolation of colour component from the roots of Morinda angustifolia Roxb. and evaluation of its dyeing characteristics

Moth proofing
Synthesis of substituted benzyl ethers and their moth proofing activity against wool pest Antheramus flavipes Le Conte

Mukhopadhyay A
Crease recovery of fabrics with air-jet textured weft yarns
Evaluation of comfort properties of polyester-viscose suiting fabrics
Low stress behaviour of jet-spun yarn
See Kothari V K

Mukhopadhyay Samrat
Microfibres—An overview

Mutinga S B See Behera B K

Nassar S H
Preparation and characterization of guar gum as a thickener in disperse dye printing pastes

Natural dye
Kinetic and thermodynamic studies on red sandalwood

Naturally coloured cotton
Development of various colours and shades in naturally coloured cotton fabrics

Nergis B U
Structure of air-jet spun yarns produced with various twisting nozzles on PLYTrL 1000 system

Neural network
Engineering design of woven fabrics—A recent approach

Nomex
Aramid fibres—An overview

Non-mulberry silk
Property modification of Antheraea assama silk fibre through graft copolymerization

Numeri
Evaluation of comfort properties of polyester-viscose suiting fabrics

Nylon
Kinetic and thermodynamic studies on red sandalwood

Oktem T
Improvement in surface-related properties of poly(ethylene terephthalate)/cotton fabrics by glow-discharge treatment

Open-end yarn
Twist structure of friction-spun yarns: Part I—Open-end DREF-II yarns

Opening roller speed
Study on rotor deposition: Part I—Influence on quality and running performance of grey cotton yarn

Oppermann W See Gulrajani M L

Ozipek B See Nergis B U

Paita Deepali
Effect of process variables on the properties of air-jet textured yarns using response surface design

Pan N C See Chattopadhyay S N

Parmar M S
Development of various colours and shades in naturally coloured cotton fabrics
Influence of process parameters on flexural rigidity and elastic recovery of polyester OE rotor-spin yarns 44,

Influence of process parameters on hairiness of polyester MJS yarns 284

Low stress behaviour of jet-spun yarn 85

Structure and properties of polyester MJS plied yarns 236

Polyester-cotton fabric

Development of protective clothing for pesticide industry: Part I—Assessment of various finishes 85

Development of protective clothing for pesticide industry: Part II—An ecofriendly approach in selection of resin 259

Polyester-cotton yarn

Structure of air-jet spun yarns produced with various twisting nozzles on PLYfil 100 system 52

Tensile properties of polyester/cotton blended yarns 48

Polyester-viscose fabric

Evaluation of comfort properties of polyester-viscose suiting fabrics 72

Polyester-viscose yarn

Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality 38

Polyester-wool blended yarn

Properties of polyester/wool parent and air-jet textured yarns and their fabrics 236

Polypropylene

Mechanical properties of commingled yarn composites 287

Polysaccharide

Use of polysaccharide fibres for modern wound dressings 434

Pratihar P See Sengupta A K 142

352 Printing paste

Preparation and characterization of guar gum carbamate as a thickener in disperse dye printing pastes 274

Polyester fabric

Preparation and characterization of guar gum carbamate as a thickener in disperse dye printing pastes 297

Polyester yarn

Effect of process variables on the properties of air-jet textured yarns using response surface design 224

Evaluation of physical bulk of air-jet textured yarns 25

Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE rotor-spin yarns 11

Phorocarpus santalinus

Kinetic and thermodynamic studies on red sandalwood 91
<table>
<thead>
<tr>
<th>Quality indexing</th>
<th>Ring yarn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural quality assessment of different cellulosic jute fibres by X-ray diffraction</td>
<td>Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part I—Evaluation of sizing process using Zweigle G551 weavability tester</td>
</tr>
<tr>
<td>Kinetics of dyeing acrylic acid-grafted cotton fabric with basic dyes</td>
<td>Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part III—A study of attrition during weaving for air-jet, ring and rotor yarns on a modern high speed weaving machine</td>
</tr>
<tr>
<td>Radiation-induced grafting</td>
<td>Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution</td>
</tr>
<tr>
<td>Modification of cotton fabrics via radiation graft copolymerization with acrylic acid, acrylonitrile and their mixtures</td>
<td>Rotor deposition</td>
</tr>
<tr>
<td>Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution</td>
<td>Study on rotor deposition: Part I—Influence on quality and running performance of grey cotton yarn</td>
</tr>
<tr>
<td>Kajasekaran S</td>
<td>Study on rotor deposition: Part II—Influence on quality and running performance of fibre dyed cotton yarn</td>
</tr>
<tr>
<td>Generating textile designs using cellular automata</td>
<td>Rotor yarn</td>
</tr>
<tr>
<td>Dyeing of Indian wool with reactive dyes</td>
<td>Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part III—A study of attrition during weaving for air-jet, ring and rotor yarns on a modern high speed weaving machine</td>
</tr>
<tr>
<td>Reactive dyeing</td>
<td>Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution</td>
</tr>
<tr>
<td>Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute</td>
<td>Rotor deposition</td>
</tr>
<tr>
<td>Red sandalwood</td>
<td>Study on rotor deposition: Part I—Influence on quality and running performance of grey cotton yarn</td>
</tr>
<tr>
<td>Kinetic and thermodynamic studies on red sandalwood</td>
<td>Study on rotor deposition: Part II—Influence on quality and running performance of fibre dyed cotton yarn</td>
</tr>
<tr>
<td>Reducing sugar</td>
<td>Rotor yarn</td>
</tr>
<tr>
<td>Computation of thermal conductivity of fibre from thermal conductivity of twisted yarn</td>
<td>Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part II—A comparative study of sized yarn performance for ring-and rotor-spun cotton yarns</td>
</tr>
<tr>
<td>See Kawabata S</td>
<td>Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part III—A study of attrition during weaving for air-jet, ring and rotor yarns on a modern high speed weaving machine</td>
</tr>
<tr>
<td>Residual shrinkage</td>
<td>Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution</td>
</tr>
<tr>
<td>Effect of thermal treatment on wrap-spun jute yarns</td>
<td>Rotor-spun yarn</td>
</tr>
<tr>
<td>Residual trash content</td>
<td>Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE rotor-spun yarns</td>
</tr>
<tr>
<td>Study on rotor deposition: Part I—Influence on quality and running performance of grey cotton yarn</td>
<td>Influence of process parameters on flexural rigidity and elastic recovery of polyester OE rotor-spun yarns</td>
</tr>
<tr>
<td>Study on rotor deposition: Part II—Influence on quality and running performance of fibre dyed cotton yarn</td>
<td>Roving T M</td>
</tr>
<tr>
<td>Development of protective clothing for pesticide industry: Part II—An ecofriendly approach in selection of resin</td>
<td>Apron slippage in ring frame: Part II—Factors affecting apron slippage and their effect on yarn quality</td>
</tr>
<tr>
<td>Response surface design</td>
<td>Roy A N See Basu G</td>
</tr>
<tr>
<td>Effect of process variables on the properties of air-jet textured yarns using response surface design</td>
<td>Sahu Abhishek See Mukhopadhyay A</td>
</tr>
<tr>
<td>Ring spinning</td>
<td>Sahu Ablinck See Mukhopadhyay A</td>
</tr>
<tr>
<td>Properties and processibility of compact yarns</td>
<td>koratkar S</td>
</tr>
</tbody>
</table>
Influence of frictional characteristics of core and sheath in relation with core-sheath ratio and spinning drums' speed on tensile characteristics of DREF-3 friction-spun yarns.

Influence of some test parameters on friction in acrylic fibres.

Twist structure of friction-spun yarns: Part I—Open-end DREF-II yarns.

Predicting the draped pleat graceful appearance through fabric mechanical properties.

A comparative study of two wool enzyme treatments.

Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute.

Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part III—A study of attrition during weaving for air-jet, ring and rotor yarns on a modern high speed weaving machine.

Influence of filament core surface structure on tensile properties of DREF-3 yarns.
ANNUAL INDEX

Tensile properties
- A geometric model of woven geotextile tape fabric to predict tensile property 388
- Effect of thermal treatment on wrap-spun jute yarns 369
- Influence of filament core surface structure on tensile properties of DREF-3 yarns 18
- Tensile properties of polyester / cotton blended yarns 48
- Tensile strength
 - Development of protective clothing for pesticide industry: Part I—Assessment of various finishes 199
- Textile design
 - Generating textile designs using cellular automata 242
- Textured filament core
 - Influence of filament core surface structure on tensile properties of DREF-3 yarns 18
- Textured yarn
 - Crease recovery of fabrics with air-jet textured weft yarns 303
 - Evaluation of physical bulk of air-jet textured yarns 25
 - Properties of polyester/wool parent and air-jet textured yarns and their fabrics 156
- Texturing
 - Effect of process variables on the properties of air-jet textured yarns using response surface design 224
 - Microfibers—An overview 307
 - Properties of polyester/wool parent and air-jet textured yarns and their fabrics 156
- Thermal conductivity
 - Computation of thermal conductivity of fibre from thermal conductivity of twisted yarn 342
 - Thermal conductivity of unidirectional fibre composites made from yarns and computation of thermal conductivity of yarns 217
- Thermal degradation
 - Effect of hydrogen peroxide bleaching on sulphonated jute-cotton blended fabric 280
 - Thermal studies on cellulose cyclohexene phosphonate in air 189
- Thermal insulation
 - Evaluation of comfort properties of polyester-viscose mixing fabrics 72
- Thermal treatment
 - Effect of thermal treatment on wrap-spun jute yarns 309
- Thermodynamic study
 - Kinetic and thermodynamic studies on red sandalwood 91

Static tensile test
- Tensile properties of polyester / cotton blended yarns

Step-wise regression analysis
- Predicting the draped pleat graceful appearance through fabric mechanical properties

Stick-slip effect
- Influence of some test parameters on friction in acrylic fibres

Structural modification
- Solvent-induced modifications in poly (ethylene terephthalate) structure, properties and dyeability

Subramaniam V See Raghu Nathan K
- Sulphur dye
 - Alternative reducing system for dyeing of cotton with sulphur dyes

Suri Monu
- Development of protective clothing for pesticide industry: Part I—Assessment of various finishes
- Development of protective clothing for pesticide industry: Part II—An eco-friendly approach in selection of resin

Sushila See Dahya J B
- Tape fabric
 - A geometric model of woven geotextile tape fabric to predict tensile property 388

Technora
- Aramid fibres—An overview 290

Tenacity
- Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality 38
- Effect of process variables on the properties of air-jet textured yarns using response surface design 224
- Influence of frictional characteristics of core and sheath in relation with core-sheath ratio and spinning drums' speed on tensile characteristics of DREF-3 friction-spin yarns 230
- Physical properties of oil-palm leaf fibre
- Prediction of fibre quality from anatomical studies of jute stem: Part II—Prediction of strength 254
- Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution 358

Tensile characteristics
- Influence of frictional characteristics of core and sheath in relation with core-sheath ratio and spinning drums' speed on tensile characteristics of DREF-3 friction-spin yarns 230
- Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution 358
Thickener
Preparation and characterization of guar carbaminate as a thickener in disperse dye printing pastes

Top apron
Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality

Top arm pressure
Apron slippage in ring frame: Part II—Factors affecting apron slippage and their effect on yarn quality

Torsional rigidity
Physical properties of oil-palm leaf fibre

Total hand value
Evaluation of comfort properties of polyester-viscose suiting fabrics

Tracer fibre technique
Twist structure of friction-spun yarns: Part I—Open-end DREF-II yarns

Transverse conductivity
Thermal conductivity of unidirectional fibre composites made from yarns and computation of thermal conductivity of yarns

Trilobal fibre
Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE-rotor-spun yarns
Influence of process parameters on flexural rigidity and elastic recovery of polyester OE-rotor-spun yarns

Twist factor
Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE-rotor-spun yarns

Twist liveliness
Effect of thermal treatment on wrap-spun jute yarns

Twisted filament core
Influence of filament core surface structure on tensile properties of DREF-3 yarns

Twisted yarn
Computation of thermal conductivity of fibre from thermal conductivity of twisted yarn

Twisting nozzle
Structure of air-jet spun yarns produced with various twisting nozzles on PLYIL 1000 system

Tyagi G K
Elastic recovery properties of polyester jet-spun yarns
Influence of fibre cross-sectional shape on dye uptake and mechanical properties of polyester OE-rotor-spun yarns

Influence of process parameters on flexural rigidity and elastic recovery of polyester OE-rotor-spun yarns
Influence of process parameters on hairiness of polyester MJS yarns
Structure and properties of polyester MJS plied yarns

Venkatraj R. Sev Chidambaram D
Vemekar S. Sev Sengupta A K 142-149

Vinaybhai Shukhram Sev Chavan R B 179

Viny monomer
Property modification of Antheraea assamensis silk fibre through graft copolymerization

Viscose yarn
Low stress behaviour of jet-spun yarn

Viscose-polyester fabric
Evaluation of comfort properties of polyester-viscose suiting fabrics

Viscose-polyester yarn
Apron slippage in ring frame: Part I—Establishing the phenomenon and its impact on yarn quality

Wash fastness
Effect of pretreatments on ambient temperature bleaching and reactive dyeing of jute

Water repellency
Development of protective clothing for pesticide industry: Part I—Assessment of various finishes

Water retention value
Property modification of Antheraea assamensis silk fibre through graft copolymerization

Water stain
Property modification of Antheraea assamensis silk fibre through graft copolymerization

Water vapour permeability
Development of protective clothing for pesticide industry: Part II—An eco-friendly approach in selection of resin

Water-vapour resistance
Evaluation of comfort properties of polyester-viscose suiting fabrics

Weavability tester
Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part I—Evaluation of sizing process using Zweigle G551 weavability tester

Weaving
Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part III—A study of attrition during weavning for air-jet, ring and rotor yarns on a modern high speed weaving machine

"
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull distribution</td>
<td></td>
</tr>
<tr>
<td>Studies on the tensile characteristics of ring and rotor yarns using</td>
<td>358</td>
</tr>
<tr>
<td>modified Weibull distribution</td>
<td></td>
</tr>
<tr>
<td>Weighting</td>
<td></td>
</tr>
<tr>
<td>Weighting of silk by graft copolymerization technique</td>
<td>171</td>
</tr>
<tr>
<td>Wetability</td>
<td></td>
</tr>
<tr>
<td>Improvement in surface-related properties of polyester terephthalate/c</td>
<td>161</td>
</tr>
<tr>
<td>cotton fabrics by glow-discharge treatment</td>
<td></td>
</tr>
<tr>
<td>Whiteness index</td>
<td></td>
</tr>
<tr>
<td>Effect of pretreatments on ambient temperature bleaching and reactive</td>
<td>417</td>
</tr>
<tr>
<td>dying of jute</td>
<td></td>
</tr>
<tr>
<td>Winding speed</td>
<td></td>
</tr>
<tr>
<td>Properties and processibility of compact yarns</td>
<td>362</td>
</tr>
<tr>
<td>Wool</td>
<td></td>
</tr>
<tr>
<td>A comparative study of two wool enzyme treatments</td>
<td>408</td>
</tr>
<tr>
<td>Dyeing of Indian wool with reactive dyes</td>
<td>95</td>
</tr>
<tr>
<td>Kinetic and thermodynamic studies on red sandalwood</td>
<td>91</td>
</tr>
<tr>
<td>Synthesis of substituted benzyl ethers and their moth proofing activity</td>
<td>184</td>
</tr>
<tr>
<td>against wool pest Antheraea flavipes Le Conte</td>
<td></td>
</tr>
<tr>
<td>Wood-polyester yarn</td>
<td></td>
</tr>
<tr>
<td>Properties of polyester/wool parent and air-jet textured yarns and</td>
<td>156</td>
</tr>
<tr>
<td>their fabrics</td>
<td></td>
</tr>
<tr>
<td>Wound dressing</td>
<td></td>
</tr>
<tr>
<td>Use of polysaccharide fibres for modern wound dressings</td>
<td>434</td>
</tr>
<tr>
<td>Woven fabric</td>
<td></td>
</tr>
<tr>
<td>A geometric model of woven geotextile tape fabric to predict tensile</td>
<td>388</td>
</tr>
<tr>
<td>property</td>
<td></td>
</tr>
<tr>
<td>Engineering design of woven fabrics—A recent approach</td>
<td>315</td>
</tr>
<tr>
<td>Wrap-span yarn</td>
<td></td>
</tr>
<tr>
<td>Effect of thermal treatment on wrap-span jute yarns</td>
<td>369</td>
</tr>
<tr>
<td>Wrapper fibre</td>
<td></td>
</tr>
<tr>
<td>Influence of fibre cross-sectional shape on dye uptake and mechanical</td>
<td>11</td>
</tr>
<tr>
<td>properties of polyester OE rotor-spun yarns</td>
<td></td>
</tr>
<tr>
<td>Influence of process parameters on flexural rigidity and elastic</td>
<td>44</td>
</tr>
<tr>
<td>recovery of polyester OE rotor-spun yarns</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td></td>
</tr>
<tr>
<td>Structural quality assessment of different cellulosic jute fibres by</td>
<td>65</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td></td>
</tr>
<tr>
<td>Yadav P. See Das A</td>
<td></td>
</tr>
<tr>
<td>Yarn</td>
<td></td>
</tr>
<tr>
<td>Apron slippage in ring frame: Part I—Establishing the phenomenon and</td>
<td>38</td>
</tr>
<tr>
<td>its impact on yarn quality</td>
<td></td>
</tr>
<tr>
<td>Computation of thermal conductivity of fibre from thermal conductivity</td>
<td>342</td>
</tr>
<tr>
<td>of twisted yarn</td>
<td></td>
</tr>
<tr>
<td>Crease recovery of fabrics with air-jet textured wool</td>
<td>393</td>
</tr>
<tr>
<td>Effect of friction drum speed and yarn delivery rate combination for</td>
<td>33</td>
</tr>
<tr>
<td>a constant friction ratio on quality of friction-spun yarns</td>
<td></td>
</tr>
<tr>
<td>Effect of process variables on the properties of air-jet textured</td>
<td>224</td>
</tr>
<tr>
<td>yarns using response surface design</td>
<td></td>
</tr>
<tr>
<td>Effect of thermal treatment on wrap-span jute yarns</td>
<td>369</td>
</tr>
<tr>
<td>Elastic recovery properties of polyester jet-spun yarns</td>
<td>352</td>
</tr>
<tr>
<td>Evaluation of physical bulk of air-jet textured yarns</td>
<td>25</td>
</tr>
<tr>
<td>Influence of fibre cross-sectional shape on dye uptake and mechanical</td>
<td>11</td>
</tr>
<tr>
<td>properties of polyester OE rotor-spun yarns</td>
<td></td>
</tr>
<tr>
<td>Influence of filament core surface structure on tensile properties of</td>
<td>18</td>
</tr>
<tr>
<td>DREF-3 yarns</td>
<td></td>
</tr>
<tr>
<td>Influence of frictional characteristics of core and sheath in relation</td>
<td>230</td>
</tr>
<tr>
<td>with core-sheath ratio and spinning drums’ speed on tensile</td>
<td></td>
</tr>
<tr>
<td>characteristics of DREF-3 friction-spun yarns</td>
<td></td>
</tr>
<tr>
<td>Influence of process parameters on flexural rigidity and elastic</td>
<td>44</td>
</tr>
<tr>
<td>recovery of polyester OE rotor-spun yarns</td>
<td></td>
</tr>
<tr>
<td>Influence of process parameters on hairiness of polyester MJS yarns</td>
<td>284</td>
</tr>
<tr>
<td>Influence of yarn structure, sizing ingredients and type of sizing</td>
<td>59</td>
</tr>
<tr>
<td>on properties and performance of sized yarns: Part I—Evaluation of</td>
<td></td>
</tr>
<tr>
<td>sizing process using Zweigle G551 weavability tester</td>
<td></td>
</tr>
<tr>
<td>Influence of yarn structure, sizing ingredients and type of sizing</td>
<td>142</td>
</tr>
<tr>
<td>on properties and performance of sized yarns: Part II—A comparative</td>
<td></td>
</tr>
<tr>
<td>study of sized yarn performance for ring-and rotor-spun cotton yarns</td>
<td></td>
</tr>
<tr>
<td>Influence of yarn structure, sizing ingredients and type of sizing</td>
<td>149</td>
</tr>
<tr>
<td>on properties and performance of sized yarns: Part III—A study of</td>
<td></td>
</tr>
<tr>
<td>attrition during weaving for air-jet, ring and rotor yarns on a</td>
<td></td>
</tr>
<tr>
<td>modern high-speed weaving machine</td>
<td></td>
</tr>
<tr>
<td>Low stress behaviour of jet-span yarn</td>
<td>130</td>
</tr>
<tr>
<td>Mechanical properties of commingled yarn composites</td>
<td>287</td>
</tr>
<tr>
<td>Properties and processibility of compact yarns</td>
<td>362</td>
</tr>
<tr>
<td>Properties of polyester/wool parent and air-jet textured yarns and</td>
<td>156</td>
</tr>
<tr>
<td>their fabrics</td>
<td></td>
</tr>
<tr>
<td>Structure and properties of polyester MJS plied yarns</td>
<td>236</td>
</tr>
</tbody>
</table>
Structure of air-jet spun yarns produced with various twisting nozzles on PLYfil 1000 system
Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution
Study on rotor deposition: Part I — Influence on quality and running performance of grey cotton yarn
Study on rotor deposition: Part II — Influence on quality and running performance of fibre dyed cotton yarn
Tensile properties of polyester / cotton blended yarns
Thermal conductivity of unidirectional fibre composites made from yarns and computation of thermal conductivity of yarns
Twist structure of friction-spun yarns: Part I—Open-end DREF-arms
Weighting of silk by graft copolymerization technique
Yarn CSP
Study on rotor deposition: Part II — Influence on quality and running performance of fibre dyed cotton yarn
Yarn delivery rate
Effect of friction drum speed and yarn delivery rate combination for a constant friction ratio on quality of friction-spun yarns
Yarn hairiness
Influence of process parameters on hairiness of polyester MJS yarns
Properties and processibility of compact yarns

Yarn imperfections
Study on rotor deposition: Part I — Influence on quality and running performance of grey cotton yarn
Study on rotor deposition: Part II — Influence on quality and running performance of fibre dyed cotton yarn
Yarn irregularity
Study on rotor deposition: Part I — Influence on quality and running performance of grey cotton yarn
Study on rotor deposition: Part II — Influence on quality and running performance of fibre dyed cotton yarn
Yarn properties
Low stress behaviour of jet-spun yarn
Structure and properties of polyester MJS plied yarns
Yarn structure
Yarn twist
Twist structure of friction-spun yarns: Part I—Open-end DREF-II yarns
Zweigle G551 tester
Influence of yarn structure, sizing ingredients and type of sizing on properties and performance of sized yarns: Part I — Evaluation of sizing process using Zweigle G551 weavability tester