Journal of Scientific & Industrial Research

VOLUME 69 NUMBER 11 NOVEMBER 2010

CONTENTS

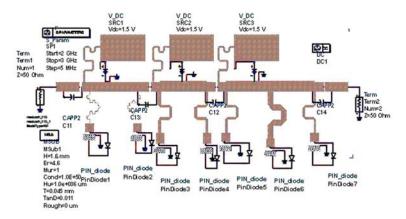
Management & Information Technology

811 Track control in automated welding of saddle

This study establishes trajectory model and welding torch pose model, and presents a four-axis $(\theta, y, r \text{ and } \eta)$ interpolation algorithm for saddle curve (SC) automatic welding. Algorithm is simulated to verify its feasibility by simulating SC with MATLAB and OpenGL tool software.

Yan Lü, Xincheng Tian & Jun Liang

S & T and Industrial Research

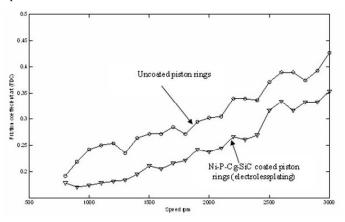

818 Agro-ecological zoning of brown planthopper [Nilaparvata lugens (Stal)] incidence on rice (Oryza sativa L.)

Multiple linear regression models (pest-weather models) were developed between monthly mean brown planthopper (BPH), *Nilaparvata lugens* light trap catches and monthly mean values of minimum temperature (Tmin), maximum temperature (Tmax), morning relative humidity (RH₁) and evening relative humidity (RH₂) observed at Maruteru, Andhra Pradesh during 2000-2007 *kharif* seasons. Comparison between predicted and observed BPH light trap catches at Nellore (*kharif* 2004 and 2005), Ragolu (*kharif* 2003-2007) and Rajendranagar (*kharif* 2005 and 2007) evinced very high level of congruence between them, thereby validating agro-ecological zoning of BPH incidence in Andhra Pradesh.

D S Yadav, Subhash Chander & K Selvaraj

823 A novel miniaturized loaded line phase shifter

This study proposes a novel design of phase shifter for WLAN applications, by using Koch fractal curves to reduce size of conventional loaded line phase shifter (PS). Proposed PS provides an area reduction (41.88%) in comparison with conventional PS.



- V K Manoharan, S Sindhuja,
- S Deepak Ram Prasath, S Raju &
- V Abhaikumar

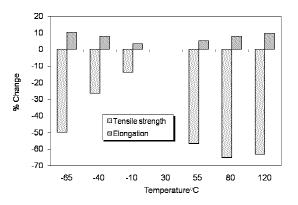
S & T and Industrial Research

830 Electroless Ni-P-C_g(graphite)-SiC composite coating and its application onto piston rings of a small two stroke utility engine

This study presents electroless Ni-P- $C_{\rm g}$ (graphite)-SiC composite coating deposition onto piston rings of a small two stroke utility engine at 90°C under $C_{\rm g}$ (10 g/l) and SiC (8 g/l) concentration at agitation speeds of 160 rpm. Coating showed compact embedding of $C_{\rm g}$ and SiC particles in Ni matrix, uniformly and largely distributed in coating by mechanical stirring. Heattreatment of coating increased microhardness due to crystallization of a hard Ni₃P phase after heat treatment.

Farhad B Bahaaideen, Zaidi Mohd Ripin & Zainal Arifin Ahmad

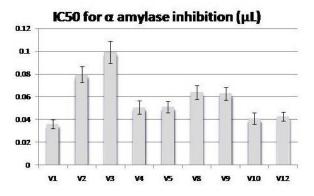
835 Decontamination of 2 chloro ethyl phenyl sulphide using mixed metal oxide nanocrystals


Decontamination reaction of 2 chloro ethyl phenyl sulphide (2-CEPS), a surrogate of sulphur mustard, was studied on nanocrystals of AP-Al $_2$ O $_3$, AP-Al $_2$ O $_3$ -Re $_2$ O $_3$, AP-Al $_2$ O $_3$ -V $_2$ O $_5$ and AP-Al $_2$ O $_3$ -CuO by using gas chromatography, gas chromatography-mass spectrometry and infrared spectroscopy techniques. Decontamination of 2-CEPS resulted via hydrolysis, oxidation and formation of surface bound alkoxides on AP-Al $_2$ O $_3$ -V $_2$ O $_5$, whereas on AP-Al $_2$ O $_3$, AP-Al $_2$ O $_3$ -Fe $_2$ O $_3$ and AP-Al $_2$ O $_3$ -CuO, decontamination of 2-CEPS resulted by hydrolysis and formation of surface bound alkoxides.

Sulphoxide of 2- chloro ethyl phenyl sulphide

S & T and Industrial Research

841 Thermal ageing studies of bromo-butyl rubber used in NBC personal protective equipment


This study evaluates degradation and stability of bromo-butyl rubber (BBR) used in NBC personal protective equipment. Elongation increased by 10% when BBR was exposed to -65°C as well as 100°C. Tensile strength decreased by 50% when exposed to -65°C and also at 55°C, and decreased to around 63% when exposed to 80° and 100°C. Morphological appearance at 80°C aged sample was intact and comparable with unaged samples. BBR exposed to 120°C developed minor cracks (<0.01 μm). Life prediction was 89 and 25 years for exposed usage temperature of 40° and 50°C respectively.

G K Kannan, L V Gaikewad, L Nirmala & N S Kumar

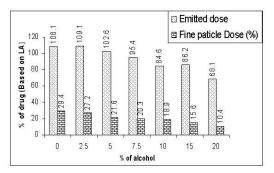
850 Prebiotic potential of 'juice grape' varieties and some hybrids

This study presents prebiotic potential of 9 grape varieties [4 marketed 'juice' grapes (G1, G2, G3, and G9) and 5 hybrids (G4, G5, G8, G10 and G12)] using 4 individual probiotics and a consortium. Marketed fructooligosaccharide (FOS) was used as a standard prebiotic. G10 showed higher growth response to *Lactobacillus acidophilus* and *L. delbrueckii* and reduced *Escherichia coli* counts with zone of inhibition against *E. coli*. Inhibititory activity of α amylase as IC₅₀ was lowest for G1 and G10. All grape varieties and hybrids showed prebiotic activity (21.2-72.5% of FOS) with G1 and G10 being promising types.

Vaishali Agte, Neelima Khetmalis, Smita Nilegaonkar, Surekha Karkamkar & Supriya Yadav

855 β-Galactosidase production and ethanol fermentation from whey using *Kluyveromyces* marxianus NCIM 3551 β -Galactosidase production and ethanol fermentation from whey were studied using *Kluyveromyces marxianus* NCIM 3551 at laboratory scale. Optimum β -galactosidase production and ethanol fermentation was obtained with 16 h old culture at an inoculum size of 10% over an incubation period of 20 h at pH 5.0 and at 25°C.

S & T and Industrial Research

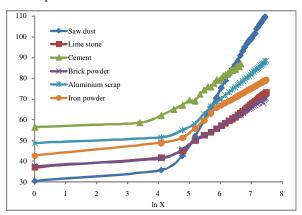

860 Study on enzyme-assisted aqueous extraction of oil from soybean

This study presents enzyme-assisted aqueous extraction (EAAE) method for oil extraction from soybean. Parameters for EAAE of oil with 1398 neutral protease were optimized through single-factor and orthogonal test. Soybean oil (yield, 80.2% w/w) was achieved under following optimized conditions: enzyme (conc., 840 IU / g soybean; pH, 7.0); enzymatic hydrolysis (temp., 45°C; time, 1.5 h); ratio of petroleum ether to soybean oil, 4:1(v/w); extraction (temp., 30°C; time, 15 min; pH, 4.5); and centrifugation force, 1400×g.

Jun-Qing Qian, De-Huai Qin, Xiang-Mao Xie & Wen-Wu Zhou

866 Performance of CFC free propellant- driven MDI of fluticasone propionate

Metered dose inhalers (MDIs) of fluticasone propionate were developed for treatment of asthma and chronic obstructive pulmonary disease. MDIs with hydrofluoroalkanes based propellants were formulated with various doses, overages and various concentrations of alcohol. Optimum requirements were found as follows: effective valve delivery, overdoses (15%); 100% drug delivery, overages (20%); and emitted dose and fine particle fraction, alcohol content (5-10%).



T E G K Murthy, M Bala Vishnu Priya & V Satyanarayana

Energy and Environment

872 Estimation of effective thermal conductivity of two-phase materials using line heat source method

This study presents fabrication of an experimental setup based on line heat source method and automate data acquisition software (LabVIEW) was used to measure thermal conductivity (TC) of two-phase materials (TPMs) with various temperatures. TC measurement of various TPMs has been carried with a minimum value (0.178 W/m°C) for saw dust and maximum value (0.64 W/m°C) for iron powder.

A P Senthil Kumar, V Prabhu Raja & P Karthikeyan

Energy and Environment

879 Thermal degradation and burning behaviour of cellulose based and cellulose-silk blended upholstery fabrics

This study presents thermal degradation and burning behaviour of cellulose based and cellulose-silk blended upholstery fabrics treated with phosphorus (chemical A) and halogen (chemical B) based flame retardant (FR) chemicals. Effect of FR reduced after treated fabrics were washed for 3 repeated cycles; rate of flame spread and char length were significantly lower when compared to control samples. Thus impregnation of FR on cellulose and silk made them force out water vapour under initial burning condition and thereby resisted burning.

K S Muralidhara & S Sreenivasan

Author-Reader Platform

886 Instructions to contributors

	Autho	or Index	
Abhaikumar V	823	Nirmala L	841
Agte V	850	D 1 C V	925
Ahmad Z A	830	Prasad G K Prasath S D R	835 823
			823 866
Bahaaideen F B	830	Priya M B V	800
Chander S	818	Qian J -Q	860
Gaikewad L V	841	Qin D H	860
Gupte A M	855		
•		Raja V P	872
Kannan G K	841	Raju S	823
Karkamkar S	850	Ripin Z M	830
Karthikeyan P	872	Satyanarayana V	866
Khetmalis N	850	Selvaraj K	818
Kumar A P S	872	Sindhuja S	823
Kumar N S	841	Sreenivasan S	879
Liang J	811		
Lü Y	811	Tian X	811
Manoharan V K	823	Xie X M	860
Muralidhara K S	879		
Murthy T E G K	866	Yadav D S	818
Nair J S	855	Yadav S	850
Nair J S Nilegaonkar S	850	Zhou W W	860
Miegaolikai S			000
	Keywo	ord Index	
2 Chloro ethyl phenyl sulphide	835	Ni-P-C _g (Graphite)-SiC coating	830
α -Amylase inhibition	850	Non-Cartesian configuration	811
β-Galactosidase	855	Tron Cartesian Comiguration	011
·		Orthogonal test	860
Activation energy	879	Overages	866
Alcohol fermentation	855	Č	
Aqueous Extraction	860	Pest zoning	818
Automated welding	811	Pest-weather model	818
Bluetooth	823	Phase shifter	823
Bromo-butyl rubber (BBR)	841	Phased array	823
Brown planthopper	818	Prebiotic potential	850
	020	Rate of flame spread	879
Composite coating	830	Reliability	872
Decontamination	835	Rice	818
	020	1111	010
Electroless plating	830	Saddle curve	811
Emitted dose	866	Soybean Oil	860
Enzymatic hydrolysis	860	Spray pattern	866
Escherichia coli	850		
Fluticasone propionate	866	Thermal ageing	841
FR4	823	Thermal conductivity	872
	0.50	Thermal degradation	879
Grape	850	Thermal oxidation	841
Kluyveromyces marxianus NCIM 3551	855	Thermal probe	872
Koch fractal	823	Track control	811
		Two-phase materials	872
Lactic cultures	850	Volva dalivary	866
Loaded line	823	Valve delivery Vertical flammability	879
Metered dose inhalers	866	v Crucai Hammaomity	079
Microstrip	823	Weight loss	879
Mixed metal oxides	835	Weight loss Whey	879 855
Minor metal Oxides	033	WLAN	823
Nanocrystals	835	W LA MA	023
NBC equipment	841	Yeast	855

J Sci Ind Res, **69** (11) 2010