Evaluation of Regional Industry Transfer Undertaking Ability Based on Sustainable Development

Mei Feng, Kehui Yu & Rong Hao

This study finds six factors which have a great influence on regional industry transfer undertaking ability: level of technical research and development, cost conditions, market potential, industrial supporting capacity, level of regional development, and environmental carrying capacity. The study collects the relevant data from 2000 to 2014 in the Jing-jin-ji Region and calculates the factor and comprehensive score of its industry transfer undertaking ability. The results show that the practice of evaluating these six factors can provide suggestions for the promotion of regional industry transfer.

<table>
<thead>
<tr>
<th>Year</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2001</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2002</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>2003</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>2004</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2005</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2006</td>
<td>2.2</td>
<td>1.1</td>
</tr>
<tr>
<td>2007</td>
<td>2.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2008</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>2009</td>
<td>2.8</td>
<td>1.4</td>
</tr>
<tr>
<td>2010</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2011</td>
<td>3.2</td>
<td>1.6</td>
</tr>
<tr>
<td>2012</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>2013</td>
<td>3.6</td>
<td>1.8</td>
</tr>
<tr>
<td>2014</td>
<td>3.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Industrial Cluster Development and its Contribution to Economic Growth in Taiwan - Hsinchu Science and Industrial Park (HSIP)

S J Lee, Grace T R Lin & P H Hsi

The development of industrial cluster plays a significant role in the growth of national industries, and the industrial cluster development indeed makes a great impact on the progression of national industries, especially in developing countries. Under the fiercely global trends in competition, industrial cluster has been identified as an important strategy to keep the development of regional industries in a sustainable trajectory, and a good implementation of industrial cluster usually reflects on the cluster region carrying within a large number of Small and Medium-Sized Enterprises (SMEs). Through the clustering of businesses and industries, the corresponding geographical proximity, and the promotion of mutual support and learning, businesses and industries located in the cluster region can further acquire the advantages of Economy of Scale and those of Economy of Scope. Meanwhile, the successful experience of Hsinchu Science and Industrial Park (HSIP) has become a good model for many countries to learn the development of Science Park, and the most contribution of HSIP is transforming the labour-intensive industries to talent-intensive industries. Also, it directly promotes the development of high-technology industries in a sustainable trajectory. Most important of all, the success of HSIP created the so-called “Taiwan Economic Miracle” in the later twentieth century, and it led Taiwan to be one of “Four Asian Tigers”.

Stochastic Multifacility Location Problem under Circular Area Constraint with Euclidean Norm

A K Santra

This investigation is the stochastic version of our previous work in which it is required to find the locations of a number of new facilities in a prescribed circular area constraint around the centre of gravity of a given number of existing facilities where the weights considered in the objective function are the random variables with discrete probabilities and the distance between the facilities is Euclidean. It has been assumed that the existing facilities are of one kind and the new facilities are of different kind with interactions between existing and new facilities as well as amongst new facilities. The stochastic multifacility location problem with circular area constraint has been formulated and solved by using Kuhn-Tucker conditions. A numerical example has also been solved by using the proposed method. Thus the outcome of the present work is a new method of finding the solution of a constrained stochastic multifacility location problem where the existing facilities are of one kind and the new facilities are of different kind.

Strategic Product Innovations and Dynamic Pricing Models in Oligopolistic Market

Min-Ren Yan

Product innovations are one of the most critical driving forces for business developments and competitive advantages. However, commercialization of innovations and a proper pricing strategy for the innovative products is needed to pursue the market value as well as the premium profits. A firm’s pricing decision is regarded as one of the most business challenges in a competitive market, especially in dual competition and oligopolistic market. Although previous studies have addressed the tactics of price competition with diverse models, there is a need for systematic analyses regarding the dynamic price competition and a firm’s strategic decision for innovative products. In this paper, System Dynamics (SD) methodology was adopted to propose a simulation-based Strategy Dynamics Pricing Model (SDPM) as a decision support system. Through iterative computer simulations, the impact of product innovations and the dynamic price competition in oligopolistic market could be systematically analyzed. Strategic pricing decisions for product innovations and market competition would be enhanced with the analysis for better innovation management.

Analysis of Single Flow Line Multi Stage Multi-Product Pull Control Systems

G G Sastry & R Garg

The production control systems in industries become a significant prerequisite for its success. The pull control systems could be a systematic approach for the effectiveness of production systems. This paper covers the investigation and performance analysis of Constant Work in Process (CONWIP), Kanban Control System (KCS) and Extended Kanban Control System (EKCS) using real time industrial problem. The industry manufactures two gears of different diameters and the demand for each is 20 per day. The CONWIP, KCS and EKCS are modeled as network diagrams in MATLAB-SIMULINK and simulated. The performance of EKCS is optimal as compared to KCS and CONWIP. The EKCS was implemented for one month and the production is increased by 54%.
Varietal Response of Exogenous Ethylene Application on Fruit Quality and Storage Life of Mango (Mangifera indica L.)

Physiologically mature freshly harvested Dashehari, Chausa and Langra mango fruits were subjected to 100 ppm ethylene dosing for 24 hours in a ripening chamber maintained with 24 ± 2°C temperatures, 95% relative humidity. After 48 hours holding in chamber, ripened fruits were taken out and stored at ambient condition (25 ± 2°C, 85 ± 5% RH) for 8 days. Dashehari reached to optimum soft eating stage on the 4th days after ethylene dosing. Chausa and Langra reached at optimum ripening stage on 6th day, while Dashehari spoiled and could not be stored further. Chausa and Langra lasted up to 8 days in storage, while their response to ethylene was found different. Ethylene evolution peak was observed maximum (1.81 µl C2H4 kg-1 h-1) in Dashehari and lowest (0.40 µl C2H4 kg-1 h-1) in Langra on 4th day of storage. Climacteric peak was declined on 8th day and lowest peak (0.31µl C2H4 kg-1 h-1) was noticed in Langra fruits closely followed by Chausa. Finally we found ethylene sensitivity of these three varieties as Dashehari < Chausa < Langra.

Synthesis of Dihydropyran Derivatives and Evaluation of their Antibacterial Activity

As the persistent resistance of Staphylococcus aureus to available antibiotics is associated with high infection incidence, mortality rate and treatment cost, novel antibacterial agents with innovative therapeutic targets must be developed. Four novel pyran derivatives (1-4) were synthesized and characterized via IR, 1H NMR, HRMS, and single crystal X-ray crystallography. The antibacterial activities of the four compounds were investigated against Salmonella paratyphi A and Enterococcus faecalis by MIC and MBC assay. It was found that compared with compounds 1 and 2, compounds 3 and 4 exerted rather potent activities against the two cell lines.
Acrylate-α-Pinene Copolymer as Biodegradable Multifunctional Additives for Lube Oil

M Upadhyaya, P Ghosh & K Dey

Experimental Investigation of Misalignment and Looseness in Rotor Bearing System using Bartlett Power Spectral Density

M Nataraj & G Baskaran

Multi-Objective Parametric Optimization for Non-Conventional Machining of Inconel 825 – for an Industrial Application

M Chandrasekaran, J George, R M Arunachalam & N Teyi
A study was conducted to develop allometric equations by destructive sampling of selected trees for prediction of biomass in Pongamia using easily measurable attributes (collar diameter, tree height, crown width and depth) and test the reliability of these relationships using an independent dataset from different management situations. Allometric models based on collar diameter, followed by crown width, showed better fit statistics as compared to the models based on other input variables. Crown depth has shown relatively weak link with the biomass parameters. Collar diameter was found to be the key driver in determining the biomass variables and number of branches. The results obtained with an independent data set validated the trained models.
CONTENTS

Author Index

A K Santra 279
B M K Raju 320
Dai-Zun Zhang 299
G Baskaran 308
G G Sastry 289
G R Rao 320
Grace T R Lin 273
J George 314
K Dey 303
Kumar 294
Kehui Yu 269
M Chandrasekaran 314
M Nataraj 308
Mei Feng 269
M Upadhyaya 303
Min-Ren Yan 284
N Teyi 314
P Ghosh 303
P H Hsi 273
P Sathir Reddy 320
P Sharath Kumar 320
R Asrey 294
R Garg 289
R M Arunachalam 314
Rong Hao 269
Rui Han 299
S J Lee 273
S Sharma 294
V R Sagar 294

Keyword Index

Allometry 320
Antibacterial 299
Area Constraint 279
Average Waiting Time 289
Bartlett Power Spectral Density 308
Biomass 320
Clustering Effect 273
Collar Diameter 320
Competition 284
CONWIP 289
Crystal 299
Decision Support 284
Demand Rate 289
Destructive Sampling 320
EKCS 289
Ethylene 294
Euclidean 279
Inconel 825 314
Industry Transfer 269
Kanban 289
KCS 289
Kuhn-Tucker Conditions 279
Limitation 279
Looseness 308
Lube Oil Additive 303
Mango 294
Misalignment 308
MR 314
Multifacility 279
Oligopoly 284
Optimality 279
Optimization 314
Pongamia pinnata L 320
Pour Point Depressant 303
Pricing 284
Pyran 299
Ripening, Quality, Storage Life 294
Rotor Bearing System 308
Simulation 284
Stochastic 279
Strategy 284
Surface Roughness 314
Sustainable Development 269
System Dynamics 284
Undertaking Ability 269
Utilization 289
Vibration Signal Processing 308
Viscosity Index Improver 303
Viscosity Index Improver 303
WEDM 314
WIP 289